Is there any chance that a 1300 rated player can beat a 2700 rated player?

  • #1021

    your right

  • #1022

    Yes there is if 2700 player blundered his queen, if he blundered a bishop or knight maybe not.

  • #1023
    Tmb86 wrote:

    hmm yes good point, can't believe no-one else has made that point in 1000 posts. Incredible.

    Is this sarcastic? The point had been made, although I admit the poster above you did so rather eloquently.

  • #1024

    "Is there any chance an average high school football team could beat an NFL team?

    Is there any chance an average high school soccer team could beat a Champions League group winner?"

     

    Well, first of all it's easier to blunder the magnitude of a mate in 1 in chess than it is in football or soccer (what would be the equivalent, really? You can allow a free touchdown, but that's no mate in 1 blunder).

    But even if we were going with this, I'm not sure we can really know that there is a zero chance of either of the things you mentioned happening, either. Again, intuitively it may seem it must be impossible, but if one were to have billions of tries, maybe a very rare, unlikely occurrence might occur.

  • #1025

    Maybe an unseen ministroke midgame that ruins the master's ability to process the board patterns.

  • #1026

    Yes, jbskaggs.

    I think it's more likely that the +2700 player has a stroke and either dies or is unable to finish the game than for the game to be lost. At least GMs have been known to die at a chess board. +2700s have not been known to lose to 1300s.

    Are the odds greater than 0? Yes.

    Are they so insignificant that the odds may as well be 0?  Yes.

  • #1027

    If the game is part of a simul the odds greatly increase.  If the game is part of a simul with at least 100 players the odds greatly increase.

     

    If it just happens that a 2700 is paired with a 1300 say in the 3rd round of a rated tournament then my guess would be the 1300 rated player would have more than 1/2 of one percent chance.

  • #1028

    Last month Chess Life featured a game where a 1000 rated player defeats a 2000 rated player.

    Certainly giving hope to the 1700's out there. And since 1300 defeating a 1700 happens quite regularly, then by the law of symetry we can say a 1300 can defeat a 2700.

    Q.E.D.

    (Feel free to refer to this as "Ubik's Axiom" It really requires no evidence, nor a proof, since this is in the form of a self-evident axiomatic Euclidean truth. However, you can of course deduce further conclusions from this law, which I leave as a excercise to the student.)

  • #1029

    Theres always the possibility. No matter how unlikely lol 

  • #1030

    In a game with 1300 and 2700 rated player

    50% both players win.

    50% GM Wins x2.

    (ignore stalemates and draw)

  • #1031
    SmyslovFan wrote:

     

    Are the odds greater than 0? Yes.

    Are they so insignificant that the odds may as well be 0?  Yes.

    The clearest and simplest answer to the original question.

  • #1032
    Ubik42 yazmış:

    Last month Chess Life featured a game where a 1000 rated player defeats a 2000 rated player.

    Certainly giving hope to the 1700's out there. And since 1300 defeating a 1700 happens quite regularly, then by the law of symetry we can say a 1300 can defeat a 2700.

    Q.E.D.

    (Feel free to refer to this as "Ubik's Axiom" It really requires no evidence, nor a proof, since this is in the form of a self-evident axiomatic Euclidean truth. However, you can of course deduce further conclusions from this law, which I leave as a excercise to the student.)

    If we accept the axiom above, the general conclusion of the topic would be flawed as well.

  • #1033
    tieics wrote:

    I think if there is 300 ELO point difference between  two players it's no point playing the game. Practically the player with lower ELO has 0 winning chance.

    I won against a guy rated 509 points ahead of me. With black. After 23 moves.

  • #1034
    Ziryab wrote:
    SmyslovFan wrote:

     

    Are the odds greater than 0? Yes.

    Are they so insignificant that the odds may as well be 0?  Yes.

    The clearest and simplest answer to the original question.

    Actually, no, unless the odds are 1/infinity. I can handle 1*10^(-23).

  • #1035
    Rasparovov wrote:
    tieics wrote:

    I think if there is 300 ELO point difference between  two players it's no point playing the game. Practically the player with lower ELO has 0 winning chance.

    I won against a guy rated 509 points ahead of me. With black. After 23 moves.

    There have been upsets of1000 or so points rating difference (my personal record is 600-700). However, as previously stated, once you get to a 1400 point difference with a game between a master and an amateur the chances are insignificant.

    (btw, 1/infinity is 0 as a limit, 'cause infinity's not actually a number)

  • #1036
    Rasparovov wrote:
    tieics wrote:

    I think if there is 300 ELO point difference between  two players it's no point playing the game. Practically the player with lower ELO has 0 winning chance.

    I won against a guy rated 509 points ahead of me. With black. After 23 moves.

    There have been upsets of1000 or so points rating difference (my personal record is 600-700). However, as previously stated, once you get to a 1400 point difference with a game between a master and an amateur the chances are insignificant.

    (btw, 1/infinity is 0 as a limit, 'cause infinity's not actually a number)

  • #1037

    If the 2700 opponent is Ivanchuk, there may be a chance. That guy is unpredictable.

  • #1038
    Mandy711 wrote:

    If the 2700 opponent is Ivanchuk, there may be a chance. That guy is unpredictable.

    I said the same thing dozens of pages ago. We know the names of every 2700+ player (currently less than 50 players), and only Ivanchuk is sloppy among that group. He also is the one who has the best chance of taking Carlsen down a notch.

  • #1039

    There's always a chance...

  • #1040
    livluvrok yazmış:

    There's always a chance...

    After all those negative comments?! Always...

or Join

Online Now