Here's one way to do it:
f(x) = e^{(pi/2)i[(e^lnx)+1]}=e^{(pi/2)i(x+1)}=e^(pi*i/2)*e^(pi*i*x/2)
pi*i/2=n
f(x)=n*e^(nx)
u substitution, u=nx
F(x)=e^u+C=e^(nx)+C=e^(x*pi*i/2)+C=[e^(pi*i)]^(x/2)=(-1)^(x/2)=i^x+C
Very simple answer from a complicated question. Reminds me of my math tests.
Given is the function:
f(x) = e^{(pi/2)i[(e^lnx)+1]}
where e is the base of the natural logarithm e=2.718
i=sqrt(-1)
and pi=3.14
Find the antiderivative(s) of f(x)...I found two different forms using two different methods.Prove your results.Have fun!