8 queens

Sort:
TAshahin

Think you have 8 queens . leave these queens to the chess bord that none of theme check other queens .

TAshahin

nobody coulde solve this problem ???

GlennBk

I can only place seven queens in this manner are you sure it can be done? Is there only one solution or many ? The key must be to place them knight's moves apart.

chessnumbers

a2, b4, c6, d8, e1, f3, g5, h7, imo

 

Edit:  Oops, lol that doesn't even begin to work.  I only checked the diagonals in one direction...

TAshahin
GlennBk wrote:

I can only place seven queens in this manner are you sure it can be done? Is there only one solution or many ? The key must be to place them knight's moves apart.


Im sure that there is one way but not sure that there is just one way .

TAshahin
lionkingfighter wrote:

Hello shahin_1995_chess

We can place 8 queens in this format. a2, b4, c6, d8, e3, f1, g7, h5. This problem is known as 8-Queens problem or 8-Queens puzzle.  

We can place it in other ways too. Here are some examples.

1. a1, b7, c4, d6, e8, f2, g5, h3

2.  a1, b7, c5, d8, e2, f4, g6, h3

3. a4, b1, c5, d8, e2, f7, g3, h6

Thanks


thank you very much

Metastable

There are either 92 or 94 distinct solutions (I forget which - I programmed this a few years ago). Of course, a bunch of those are just rotations or mirror images of each other, so there are fewer than 94 "kernel" solutions.  If yant want the full dump I can look them up.

GlennBk

Well I'm quite amazed at the fund of knowledge on this site you put me in the shade.

Metastable

It was 92 - divisible by 4. I knew this would come in handy one day Laughing Let me know if you find any mistakes!

 

:: h1 d2 a3 c4 f5 b6 g7 e8
:: h1 c2 a3 f4 b5 e6 g7 d8
:: h1 b2 e3 c4 a5 g6 d7 f8
:: h1 b2 d3 a4 g5 e6 c7 f8
:: g1 e2 c3 a4 f5 h6 b7 d8
:: g1 d2 b3 h4 f5 a6 c7 e8
:: g1 d2 b3 e4 h5 a6 c7 f8
:: g1 c2 h3 b4 e5 a6 f7 d8
:: g1 c2 a3 f4 h5 e6 b7 d8
:: g1 b2 f3 c4 a5 d6 h7 e8
:: g1 b2 d3 a4 h5 e6 c7 f8
:: g1 a2 c3 h4 f5 d6 b7 e8
:: f1 h2 b3 d4 a5 g6 e7 c8
:: f1 d2 g3 a4 h5 b6 e7 c8
:: f1 d2 g3 a4 c5 e6 b7 h8
:: f1 d2 b3 h4 e5 g6 a7 c8
:: f1 d2 a3 e4 h5 b6 g7 c8
:: f1 c2 g3 d4 a5 h6 b7 e8
:: f1 c2 g3 b4 h5 e6 a7 d8
:: f1 c2 g3 b4 d5 h6 a7 e8
:: f1 c2 e3 h4 a5 d6 b7 g8
:: f1 c2 e3 g4 a5 d6 b7 h8
:: f1 c2 a3 h4 e5 b6 d7 g8
:: f1 c2 a3 h4 d5 b6 g7 e8
:: f1 c2 a3 g4 e5 h6 b7 d8
:: f1 b2 g3 a4 d5 h6 e7 c8
:: f1 b2 g3 a4 c5 e6 h7 d8
:: f1 a2 e3 b4 h5 c6 g7 d8
:: e1 h2 d3 a4 g5 b6 f7 c8
:: e1 h2 d3 a4 c5 f6 b7 g8
:: e1 g2 d3 a4 c5 h6 f7 b8
:: e1 g2 b3 f4 c5 a6 h7 d8
:: e1 g2 b3 f4 c5 a6 d7 h8
:: e1 g2 b3 d4 h5 a6 c7 f8
:: e1 g2 a3 d4 b5 h6 f7 c8
:: e1 g2 a3 c4 h5 f6 d7 b8
:: e1 c2 h3 d4 g5 a6 f7 b8
:: e1 c2 a3 g4 b5 h6 f7 d8
:: e1 c2 a3 f4 h5 b6 d7 g8
:: e1 b2 h3 a4 d5 g6 c7 f8
:: e1 b2 f3 a4 g5 d6 h7 c8
:: e1 b2 d3 g4 c5 h6 f7 a8
:: e1 b2 d3 f4 h5 c6 a7 g8
:: e1 a2 h3 f4 c5 g6 b7 d8
:: e1 a2 h3 d4 b5 g6 c7 f8
:: e1 a2 d3 f4 h5 b6 g7 c8
:: d1 h2 e3 c4 a5 g6 b7 f8
:: d1 h2 a3 e4 g5 b6 f7 c8
:: d1 h2 a3 c4 f5 b6 g7 e8
:: d1 g2 e3 c4 a5 f6 h7 b8
:: d1 g2 e3 b4 f5 a6 c7 h8
:: d1 g2 c3 h4 b5 e6 a7 f8
:: d1 g2 a3 h4 e5 b6 f7 c8
:: d1 f2 h3 c4 a5 g6 e7 b8
:: d1 f2 h3 b4 g5 a6 c7 e8
:: d1 f2 a3 e4 b5 h6 c7 g8
:: d1 b2 h3 f4 a5 c6 e7 g8
:: d1 b2 h3 e4 g5 a6 c7 f8
:: d1 b2 g3 e4 a5 h6 f7 c8
:: d1 b2 g3 c4 f5 h6 e7 a8
:: d1 b2 g3 c4 f5 h6 a7 e8
:: d1 b2 e3 h4 f5 a6 c7 g8
:: d1 a2 e3 h4 f5 c6 g7 b8
:: d1 a2 e3 h4 b5 g6 c7 f8
:: c1 h2 d3 g4 a5 f6 b7 e8
:: c1 g2 b3 h4 f5 d6 a7 e8
:: c1 g2 b3 h4 e5 a6 d7 f8
:: c1 f2 h3 b4 d5 a6 g7 e8
:: c1 f2 h3 a4 e5 g6 b7 d8
:: c1 f2 h3 a4 d5 g6 e7 b8
:: c1 f2 d3 b4 h5 e6 g7 a8
:: c1 f2 d3 a4 h5 e6 g7 b8
:: c1 f2 b3 g4 e5 a6 h7 d8
:: c1 f2 b3 g4 a5 d6 h7 e8
:: c1 f2 b3 e4 h5 a6 g7 d8
:: c1 e2 h3 d4 a5 g6 b7 f8
:: c1 e2 g3 a4 d5 b6 h7 f8
:: c1 e2 b3 h4 f5 d6 g7 a8
:: c1 e2 b3 h4 a5 g6 d7 f8
:: c1 a2 g3 e4 h5 b6 d7 f8
:: b1 h2 f3 a4 c5 e6 g7 d8
:: b1 g2 e3 h4 a5 d6 f7 c8
:: b1 g2 c3 f4 h5 e6 a7 d8
:: b1 f2 h3 c4 a5 d6 g7 e8
:: b1 f2 a3 g4 d5 h6 c7 e8
:: b1 e2 g3 d4 a5 h6 f7 c8
:: b1 e2 g3 a4 c5 h6 f7 d8
:: b1 d2 f3 h4 c5 a6 g7 e8
:: a1 g2 e3 h4 b5 d6 f7 c8
:: a1 g2 d3 f4 h5 b6 e7 c8
:: a1 f2 h3 c4 g5 d6 b7 e8
:: a1 e2 h3 f4 c5 g6 b7 d8

TAshahin
hessmaster wrote:

Place 5 queens on a board so they control every square.


I will tell you the answer

TAshahin

Smile

batgirl

The 8 Queen problem was first suggested in 1848 and solved in 1850.

Interesting enough, Carl Jaenisch, inspired by the 8 Queen problem, proposed the 5 Queen problem in 1862 (same parameters but with 5 Queens instead of 8). It was solved by none other than Sam Loyd in 1876.

keenalise

interesting

Destructimetal
cienwysoki

???

Destructimetal

What do you mean by ??? ?