nobody coulde solve this problem ???
8 queens

I can only place seven queens in this manner are you sure it can be done? Is there only one solution or many ? The key must be to place them knight's moves apart.

a2, b4, c6, d8, e1, f3, g5, h7, imo
Edit: Oops, lol that doesn't even begin to work. I only checked the diagonals in one direction...

I can only place seven queens in this manner are you sure it can be done? Is there only one solution or many ? The key must be to place them knight's moves apart.
Im sure that there is one way but not sure that there is just one way .

Hello shahin_1995_chess
We can place 8 queens in this format. a2, b4, c6, d8, e3, f1, g7, h5. This problem is known as 8-Queens problem or 8-Queens puzzle.
We can place it in other ways too. Here are some examples.
1. a1, b7, c4, d6, e8, f2, g5, h3
2. a1, b7, c5, d8, e2, f4, g6, h3
3. a4, b1, c5, d8, e2, f7, g3, h6
Thanks
thank you very much

There are either 92 or 94 distinct solutions (I forget which - I programmed this a few years ago). Of course, a bunch of those are just rotations or mirror images of each other, so there are fewer than 94 "kernel" solutions. If yant want the full dump I can look them up.

It was 92 - divisible by 4. I knew this would come in handy one day Let me know if you find any mistakes!
:: h1 d2 a3 c4 f5 b6 g7 e8
:: h1 c2 a3 f4 b5 e6 g7 d8
:: h1 b2 e3 c4 a5 g6 d7 f8
:: h1 b2 d3 a4 g5 e6 c7 f8
:: g1 e2 c3 a4 f5 h6 b7 d8
:: g1 d2 b3 h4 f5 a6 c7 e8
:: g1 d2 b3 e4 h5 a6 c7 f8
:: g1 c2 h3 b4 e5 a6 f7 d8
:: g1 c2 a3 f4 h5 e6 b7 d8
:: g1 b2 f3 c4 a5 d6 h7 e8
:: g1 b2 d3 a4 h5 e6 c7 f8
:: g1 a2 c3 h4 f5 d6 b7 e8
:: f1 h2 b3 d4 a5 g6 e7 c8
:: f1 d2 g3 a4 h5 b6 e7 c8
:: f1 d2 g3 a4 c5 e6 b7 h8
:: f1 d2 b3 h4 e5 g6 a7 c8
:: f1 d2 a3 e4 h5 b6 g7 c8
:: f1 c2 g3 d4 a5 h6 b7 e8
:: f1 c2 g3 b4 h5 e6 a7 d8
:: f1 c2 g3 b4 d5 h6 a7 e8
:: f1 c2 e3 h4 a5 d6 b7 g8
:: f1 c2 e3 g4 a5 d6 b7 h8
:: f1 c2 a3 h4 e5 b6 d7 g8
:: f1 c2 a3 h4 d5 b6 g7 e8
:: f1 c2 a3 g4 e5 h6 b7 d8
:: f1 b2 g3 a4 d5 h6 e7 c8
:: f1 b2 g3 a4 c5 e6 h7 d8
:: f1 a2 e3 b4 h5 c6 g7 d8
:: e1 h2 d3 a4 g5 b6 f7 c8
:: e1 h2 d3 a4 c5 f6 b7 g8
:: e1 g2 d3 a4 c5 h6 f7 b8
:: e1 g2 b3 f4 c5 a6 h7 d8
:: e1 g2 b3 f4 c5 a6 d7 h8
:: e1 g2 b3 d4 h5 a6 c7 f8
:: e1 g2 a3 d4 b5 h6 f7 c8
:: e1 g2 a3 c4 h5 f6 d7 b8
:: e1 c2 h3 d4 g5 a6 f7 b8
:: e1 c2 a3 g4 b5 h6 f7 d8
:: e1 c2 a3 f4 h5 b6 d7 g8
:: e1 b2 h3 a4 d5 g6 c7 f8
:: e1 b2 f3 a4 g5 d6 h7 c8
:: e1 b2 d3 g4 c5 h6 f7 a8
:: e1 b2 d3 f4 h5 c6 a7 g8
:: e1 a2 h3 f4 c5 g6 b7 d8
:: e1 a2 h3 d4 b5 g6 c7 f8
:: e1 a2 d3 f4 h5 b6 g7 c8
:: d1 h2 e3 c4 a5 g6 b7 f8
:: d1 h2 a3 e4 g5 b6 f7 c8
:: d1 h2 a3 c4 f5 b6 g7 e8
:: d1 g2 e3 c4 a5 f6 h7 b8
:: d1 g2 e3 b4 f5 a6 c7 h8
:: d1 g2 c3 h4 b5 e6 a7 f8
:: d1 g2 a3 h4 e5 b6 f7 c8
:: d1 f2 h3 c4 a5 g6 e7 b8
:: d1 f2 h3 b4 g5 a6 c7 e8
:: d1 f2 a3 e4 b5 h6 c7 g8
:: d1 b2 h3 f4 a5 c6 e7 g8
:: d1 b2 h3 e4 g5 a6 c7 f8
:: d1 b2 g3 e4 a5 h6 f7 c8
:: d1 b2 g3 c4 f5 h6 e7 a8
:: d1 b2 g3 c4 f5 h6 a7 e8
:: d1 b2 e3 h4 f5 a6 c7 g8
:: d1 a2 e3 h4 f5 c6 g7 b8
:: d1 a2 e3 h4 b5 g6 c7 f8
:: c1 h2 d3 g4 a5 f6 b7 e8
:: c1 g2 b3 h4 f5 d6 a7 e8
:: c1 g2 b3 h4 e5 a6 d7 f8
:: c1 f2 h3 b4 d5 a6 g7 e8
:: c1 f2 h3 a4 e5 g6 b7 d8
:: c1 f2 h3 a4 d5 g6 e7 b8
:: c1 f2 d3 b4 h5 e6 g7 a8
:: c1 f2 d3 a4 h5 e6 g7 b8
:: c1 f2 b3 g4 e5 a6 h7 d8
:: c1 f2 b3 g4 a5 d6 h7 e8
:: c1 f2 b3 e4 h5 a6 g7 d8
:: c1 e2 h3 d4 a5 g6 b7 f8
:: c1 e2 g3 a4 d5 b6 h7 f8
:: c1 e2 b3 h4 f5 d6 g7 a8
:: c1 e2 b3 h4 a5 g6 d7 f8
:: c1 a2 g3 e4 h5 b6 d7 f8
:: b1 h2 f3 a4 c5 e6 g7 d8
:: b1 g2 e3 h4 a5 d6 f7 c8
:: b1 g2 c3 f4 h5 e6 a7 d8
:: b1 f2 h3 c4 a5 d6 g7 e8
:: b1 f2 a3 g4 d5 h6 c7 e8
:: b1 e2 g3 d4 a5 h6 f7 c8
:: b1 e2 g3 a4 c5 h6 f7 d8
:: b1 d2 f3 h4 c5 a6 g7 e8
:: a1 g2 e3 h4 b5 d6 f7 c8
:: a1 g2 d3 f4 h5 b6 e7 c8
:: a1 f2 h3 c4 g5 d6 b7 e8
:: a1 e2 h3 f4 c5 g6 b7 d8

Place 5 queens on a board so they control every square.
I will tell you the answer
Think you have 8 queens . leave these queens to the chess bord that none of theme check other queens .