Does chess.com 'call' the 50 moves in games ?
Maybe a player has to claim it.
I would think its called in the 'workouts' though.
Chess will never be solved, here's why
#2140
"How can you say the error rate is that function of time?"
At infinite time the error rate is 0. At zero time the error rate is infinite.
I'm OK with your first sentence. If SF thinks for infinite time it never makes a move, so, a fortiori, never makes an error.
Been struggling with that last sentence.
How can you get an error rate greater than 1?
You do subsequently give the first data point as (0,1) so presumably you must be making the assumption 1 ≅ ∞.
That would correspond with SF14, given zero think time, making an error with a probability of 1.
Even so, I'm still struggling. I've been trying to work out the probability that it would make an error in, say, this position (as either side)
but I still can't get it to 1.
Perhaps you could tell me where I'm going wrong. You know more about mathematics than me.
#2411
"In the first two cases you have two searches, in the latter just one."
++ Yes, that is correct.
However the probability of a blunder (??) = double error in the ICCF world championship finals is very, very low to start with. Once they get a won position, they play it out to a win. They do not get tired, they do not get into time trouble, they have 5 days per move, they can use engines.
Try to find one single game among the hundreds of ICCF WC games where a blunder (??) might have occured that turned a win into a loss. It is already hard to find some wins.
More generally in a won position the set of legal moves has 3 subsets:
1) good moves that keep the win,
2) errors (?) that return to a draw, and
3) blunders = double errors (??) that turn into a loss.
The first set is never empty by definition of a won position. The 2nd and 3rd sets may be empty.
"a car accident that causes a damage which costs d dollars"
++ No, this is no good analogy.
Maybe there are better analogies in quantum mechanics, like the probabilities to absorb 1 or 2 particles.
I also like the analogy of a straight line always intersecting a circle at two points. The tangent only intersects it at 1 point, which however mathematically counts as 2 points: a double root. If the straight line lies outside of the circle, then the 2 points are imaginary (complex numbers).
I'll start from the end:
"a car accident that causes a damage which costs d dollars"
++ No, this is no good analogy.
Maybe there are better analogies in quantum mechanics, like the probabilities to absorb 1 or 2 particles. I also like the analogy of a straight line always intersecting a circle at two points. The tangent only intersects it at 1 point, which however mathematically counts as 2 points: a double root. If the straight line lies outside of the circle, then the 2 points are imaginary (complex numbers).
You say that people are either unable or unwilling to understand you, but as usual I could say the same about you. I have the feeling that you try to impress the occasional reader of this thread using concepts like cloud computing, heuristics, quantum mechanics, complex numbers, etc., as if they were something special, in the hope to have them think:" Oh, this is high level stuff, this @tygxc must be a genius or something...". For sure we do not impress any of the regulars here which such or higher level things, so try to stick to the point; you should still prove that in general if an event causes an effect e₁ with probability P(e₁), and another statistically independent event causes an effect e₂ with probability P(e₂), and the sum of the two effects is e₁+e₂, the probability of an event to cause an effect e₁+e₂ is P(e₁+e₂)=P(e₁)*P(e₂). Do you want to use discrete effects? Ok, but the formula will not prove itself automagically because of that.
"In the first two cases you have two searches, in the latter just one."
++ Yes, that is correct. However the probability of a blunder (??) = double error in the ICCF world championship finals is very, very low to start with. Once they get a won position, they play it out to a win. They do not get tired, they do not get into time trouble, they have 5 days per move, they can use engines.
Try to find one single game among the hundreds of ICCF WC games where a blunder (??) might have occured that turned a win into a loss. It is already hard to find some wins.
Again, you don't understand, or... We have not strongly solved chess, so the only positions we know are wins or draws, are those which can be calculated to the checkmate or to the endgame tablebase, thus it is obvious that if they get a won position they play it optimally, because we know that position is won by analysis and tablebases; that doesn't mean they play all the other positions with few errors. Therefore, you cannot start with the assumption that the probability of a blunder is "very, very" low.
The draw rate does not mean anything. You say check the ICCF games... If you look at the games played only by the first classified (let's say the top 10) in the ICCF WC finals (thus excluding games they played against the classified below position 10), you can see that at least from edition 17, started in 2002, the draw rate was already well above 80%. You could infer the error rate from those results, then, and what would you get? That engines twenty years ago were as close to perfection as engines today...
Stop jumping to conclusions: you are too creative and selective in choosing hypotheses. May be that helps in practical play, but that's another story.
The draw rate does not mean anything. You say check the ICCF games... If you look at the games played only by the first classified (let's say the top 5)
Well, let's do top 10. The size of the sample cannot be too small, but the sample cannot include all the players. I think that twenty years ago the differences in hardware and software between participants were bigger. In the past, the speed of computations was based on the speed of the cores, but today we reach higher speed more through parallelization. There's a limit to the increment in speed we can get this way, though, especially for chess. So today there is less difference in performances. If we couple this with the increased sarch depth, which for sure produces more stable, but not necessarily more correct evaluations, I think the year by year inrceasing rate of draws in ICCF games can be explained, without the hypothesis that the evaluations are closer to perfection, today.
#2429
"you try to impress the occasional reader of this thread using concepts like cloud computing, heuristics, quantum mechanics, complex numbers, etc."
++ No, not at all. See the reference on cloud engines: they do reach 10^9 nodes/s. See the paper on solving Losing Chess: it does mention heuristics. Quantum mechanics is based on probability calculation and on complex numbers. I have seen a quantum electrodynamical calculation on the probability of absorption of 1, 2, 3... photons using Feynman diagrams. It is in the booklet "QED" by Feynman. I do not have it on my shelf, so I cannot tell you page and line.
Even in your car crashes analogy: every insurance company will tell you they settle more minor damages than they settle total losses.
Let us do some simple high school math
Let D represent the rate of decisive games
Let E represent the error rate per game
D = E + E³ + E^5 + E^7 + ... = E / (1 - E²)
Hence
E² + E/D - 1 = 0
Hence
E = Sqrt (1 + 1 / (2*D)²) - 1 / (2*D)
Let us now apply this
ICCF WC32: D = 17 / 125 = 0.14, E = 0.13, E² = 0.018, E³ = 0.0024
ICCF WC31: D = 14 / 133 = 0.11, E = 0.10, E² = 0.011, E³ = 0.0011
ICCF WC30: D = 9 / 136 = 0.07, E = 0.07, E² = 0.0043, E³ = 0.00029
Yekaterinburg 2021: D = 25 / 56 = 0.45, E = 0.38, E² = 0.15, E³ = 0.056
Zürich 1953: D = 90 / 210 = 0.43, E = 0.37, E² = 0.14, E³ = 0.051
So the data show, that 99% of ICCF WC draws are ideal games with optimal moves that thus are part of the weak solution of chess.
"We have not strongly solved chess, so the only positions we know are wins or draws, are those which can be calculated to the checkmate or to the endgame tablebase"
++ I also consider chess ultra-weakly solved and the game-theoretic value of the initial position to be a draw. Any other would contradict the observed data.
Also positions with a forced 3-fold repetition are known draws, e.g. perpetual checks.
This commonly happens in ICCF WC games, more than table base draws.
Some other endgames with more than 7 men are also known to be draws, e.g. most endgames with opposite colored bishops, rook endings with 4 vs. 3 pawns or less on the same wing etc.
"thus it is obvious that if they get a won position they play it optimally, because we know that position is won by analysis and tablebases"
++ Once they reach the table base draw, they stop playing and just claim the draw.
"that doesn't mean they play all the other positions with few errors"
++ No, but the low error rate results from the low draw rate.
In an ICCF WC the error rate E = 0.10: 1 error in 10 games.
"you cannot start with the assumption that the probability of a blunder is "very, very" low"
++ No, I do not start with that assumption, I derive it from the data.
In the ICCF WC games E² = 0.01: 2 errors in 1 of 100 games.
"Stop jumping to conclusions"
++ That is how science works: deduction and induction. E.g. the celestial orbits have not been deduced from the laws of motion and gravity: it was the other way around. Kepler derived his laws of planetary motion from astronomical observations by Tycho Brahe. Newton derived his laws of motion and of gravity from Kepler's laws. He invented the calculus he needed for that.
You're doing it backwards. You can't use an error rate derived from imperfect play and imperfect evaluations. You need to weakly solve chess before you can claim a valid error rate. You *can* see how often engine play matches a tablebase if you turn off their tablebase access, because tablebases do represent perfect play, but that still would not tell you a valid error rate for a middle game or opening at all.
All those math formulas are useless when you plug in assumptions and bad logic.
Here's where you go off track:
"So the data show, that 99% of ICCF WC draws are ideal games with optimal moves that thus are part of the weak solution of chess."
What you mean to say is that 99% of ICCF WC draws have no errors *detectable by the engines evaluating the games*. These engines are improving weekly, monthly, yearly, etc. and ergo cannot be used as a basis for determining "best play"...only "currently best understood play until next week rolls around...". These engines *cannot determine ideal games or even optimal moves in most cases* until/unless they are forcing mate via brute force, or they utilize a tablebase.
A job is being done here of showing various ways chess will Not be solved.
Neither strongly nor 'weakly'.
'Weak' solving has to be 'strong' enough.
For now the weak ways are too weak.
And that's being dissected and isolated and displayed here.
What is really impossible to understand, if not hypothesizing that you do not understand or you are evasive, is why you address questions other than those raised, or repeat the same things like a spammer:
"you try to impress the occasional reader of this thread using concepts like cloud computing, heuristics, quantum mechanics, complex numbers, etc."
++ No, not at all. [ . . . repetitions . . . ] I have seen a quantum electrodynamical calculation on the probability of absorption of 1, 2, 3... photons using Feynman diagrams. It is in the booklet "QED" by Feynman. I do not have it on my shelf, so I cannot tell you page and line.
And how that should answer the question you were supposed to answer?
Even in your car crashes analogy: every insurance company will tell you they settle more minor damages than they settle total losses.
That's an answer to a different question.
Let us do some simple high school math
Let D represent the rate of decisive games
Let E represent the error rate per game
D = E + E³ + E^5 + E^7 + ... = E / (1 - E²)
Hence
[ . . . ]
I told you such behaviour is just insulting. You repeat things exactly the same as if we were stupid, or we could just get convinced through repetition. If you want to reference things for newcomers, instead, you can just make a link. As @btickler already explained preceding me, your calculations would be correct if your premises were correct. We know the geometric series, don't worry. I asked you to prove those premises, though, starting from the question on the probabilities.
So the data show, that 99% of ICCF WC draws are ideal games with optimal moves that thus are part of the weak solution of chess.
Another just offensive repetition. We already contested your conclusions. If you want you can raise questions about those objections, as we do with yours.
"We have not strongly solved chess, so the only positions we know are wins or draws, are those which can be calculated to the checkmate or to the endgame tablebase"
++ I also consider chess ultra-weakly solved and the game-theoretic value of the initial position to be a draw. Any other would contradict the observed data.
You are just dismissing my objection to that, with no counter-objection.
Also positions with a forced 3-fold repetition are known draws, e.g. perpetual checks.
This commonly happens in ICCF WC games, more than table base draws.
Ok, also 3-fold repetitions other than checkmate. That does not change the main point.
"thus it is obvious that if they get a won position they play it optimally, because we know that position is won by analysis and tablebases"
++ Once they reach the table base draw, they stop playing and just claim the draw.
You talked about a won position, and now you talk about a draw, but you didn't address my whole objection.
"that doesn't mean they play all the other positions with few errors"
++ No, but the low error rate results from the low draw rate.
In an ICCF WC the error rate E = 0.10: 1 error in 10 games.
Another repetition. It's based on your not proven premises; see above.
"you cannot start with the assumption that the probability of a blunder is "very, very" low"
++ No, I do not start with that assumption, I derive it from the data.
In the ICCF WC games E² = 0.01: 2 errors in 1 of 100 games.
Based on assumed premises. Do you see that you simply avoid issues? I repeat my whole objection here, only because you just dismembered it, without countering it:
We have not strongly solved chess, so the only positions we know are wins or draws, are those which can be calculated to the checkmate or to the endgame tablebase (or to a 3-fold repetition, a 50 move rule hit, ok), thus it is obvious that if they get a won position they play it optimally, because we know that position is won by analysis and tablebases; that doesn't mean they play all the other positions with few errors. Therefore, you cannot start with the assumption that the probability of a blunder is "very, very" low.
"Stop jumping to conclusions"
++ That is how science works: deduction and induction. E.g. [ . . . ] Newton derived his laws of motion and of gravity from Kepler's laws. He invented the calculus he needed for that.
Yes, Holmes, and dog's and cat's brains work like that too, but the problem is your inductions are faulty generalizations IMO, and your deductions not rigorous enough to be scientific, and we explained you why. Instead of objecting our objections, you just repeat your points. That for sure is not how science work.
BTW, Newton did not derive his laws of motion and gravity from Kepler's laws and specifying the rest has no relevance, you are just bragging
.
However, both sides go in for meaningless pretences of erudition. Everybody is trying to out-impress each other: it's what makes this thread so educational. To communicate, there has to be co-operation and no-one wants that, because it would mean the facades would be wiped clean away. Everyone would be seen more clearly for what they actually bring! Oh no!!! ![]()
@tygxc although 'wanting to talk about solving' is also demonstrating power.
He's demonstrating that he can continue as he has.
While getting considerable response. And continuing to.
"solving chess" - although a much more popular subject (in all its many forms) than some here realize - isn't in the 'sensitive and loaded' category of things like religion and politics and Covid and current world affairs ...
so almost any position can be 'gotten away with'.
He isn't going to be censured for 'spreading Invalid 'solving' Disinformation throughout the internet'. ![]()
Idea: Some conversation of the subject can go on around him - while not having to ignore his ideas. It has.
But I'd say he's dominated the forum throughout.
Congratulations ! There's not really any harm done from that.
Not from him.
And - solving chess is an intellectual subject.
People will make their contributions to the subject. Their way.
Regardless of how whoever projects his projections.
@tygxc deserves some good treatment - because he does not do that.
He manages to be civil. Not a lot of personalization from him.
Another reason that he's 'dominated' so far.
Those who are worried about who is 'dominant' (apparently there's only one and its not I) will continue to complain. ![]()
Now there might be some pingpong. But between who ?
<<BTW, Newton did not derive his laws of motion and gravity from Kepler's laws and specifying the rest has no relevance, you are just bragging>>
Newton was a very accomplished plagiarist, who had less net input into knowledge than is often imagined. Much of what he wrote was plagiarised from Hooke's work. Hooke was the greater genius and Newton had all his work destroyed to cover his own sins. Kepler's input into Newton's work would have been considerable.
#2452
"You're doing it backwards."
++ Yes, it may be unusual. See my analogy: not the celestial orbits from gravity and motion, but gravity and motion from astronomical observations.
"You can't use an error rate derived from imperfect play and imperfect evaluations."
++Yes, I can draw conclusions from data.
"You need to weakly solve chess before you can claim a valid error rate."
++ I said I consider chess ultra-weakly solved and the game-theoretic value to be a draw. From that and the data I can conclude that 99% of the ICCF WC draws are ideal games with optimal moves.
"You *can* see how often engine play matches a tablebase if you turn off their tablebase access, because tablebases do represent perfect play"
++ Yes, that is right. That is why I suggested to take a 7-men position like KRPP vs. KRP. There was one posted and I found the engine top 1 move matches the table base exact move. You are free to suggest another KRPP vs. KRP. I predict that the table base perfect move will always be within the top 4 engine moves.
"What you mean to say is that 99% of ICCF WC draws have no errors *detectable by the engines evaluating the games"
++ No, I do not refer to the engine evaluations, I only refer to the final result: draw.
"These engines *cannot determine ideal games or even optimal moves in most cases"
++ It is not the engines that determine ideal games it are the results: the draws from table bases, from forced 3-fold repetitions, from reaching known drawn endgames like opposite colored bishops or KRPPPP vs. KRPPP or less pawns on 1 wing.
The table base optimal move is always expected to be within the top 4 engine moves at 60 h/move. If you disagree, then try to find a KRPP vs. KRP where that is not true. In the previously posted example it was true.
<<BTW, Newton did not derive his laws of motion and gravity from Kepler's laws and specifying the rest has no relevance, you are just bragging>>
Newton was a very accomplished plagiarist, who had less net input into knowledge than is often imagined. Much of what he wrote was plagiarised from Hooke's work. Hooke was the greater genius and Newton had all his work destroyed to cover his own sins. Kepler's input into Newton's work would have been considerable.
Given your views of Einstein, this position is hardly surprising. I suspect if we were to name 100 luminaries of human advancement, you would have 95 other people who should have received the credit. Makes one wonder how your life progressed and affected this viewpoint you have.
Lol !