In culture
- The number eight is considered to be a lucky number in Chinese and other Asian cultures.[2]
- Hanukkah is a Jewish festival holiday that lasts eight days and eight nights.
http://en.wikipedia.org/wiki/8_(number)
When I was young I went to bed at 8. I sometimes get up at 8. I like to eat after 8. Wow! Spooky! ;)
64:
Sixty-four is:
5 points per rook:
Five is the third prime number. Because it can be written as 221+1, five is classified as a Fermat prime; therefore a regular polygon with 5 sides (a regular pentagon) is constructible with compass and unmarked straightedge. 5 is the third Sophie Germain prime, the first safe prime, the third Catalan number, and the third Mersenne prime exponent. Five is the first Wilson prime and the third factorial prime, also analternating factorial. Five is the first good prime. It is an Eisenstein prime with no imaginary part and real part of the form
. It is also the only number that is part of more than one pair of twin primes. Five is a congruent number. Five is conjectured to be the only odduntouchable number and if this is the case then five will be the only odd prime number that is not the base of an aliquot tree.
The number 5 is the fifth Fibonacci number, being 2 plus 3. 5 is also a Pell number and a Markov number, appearing in solutions to the Markov Diophantine equation: (1, 2, 5), (1, 5, 13), (2, 5, 29), (5, 13, 194), (5, 29, 433), ... (
A030452 lists Markov numbers that appear in solutions where one of the other two terms is 5). Whereas 5 is unique in the Fibonacci sequence, in the Perrin sequence 5 is both the fifth and sixth Perrin numbers.
In bases 10 and 20, 5 is a 1-automorphic number.
5 and 6 form a Ruth–Aaron pair under either definition.
There are five solutions to Znám's problem of length 6.
Five is the second Sierpinski number of the first kind, and can be written as S2=(22)+1
While polynomial equations of degree 4 and below can be solved with radicals, equations of degree 5 and higher cannot generally be so solved. This is the Abel–Ruffini theorem. This is related to the fact that the symmetric group Sn is a solvable group for n ≤ 4 and not solvable for n ≥ 5.
While all graphs with 4 or fewer vertices are planar, there exists a graph with 5 vertices which is not planar: K5, the complete graph with 5 vertices.
Five is also the number of Platonic solids.[1]
A polygon with five sides is a pentagon. Figurate numbers representing pentagons (including five) are called pentagonal numbers. Five is also a square pyramidal number.
Five is the only prime number to end in the digit 5, because all other numbers written with a 5 in the ones-place under the decimal system are multiples of five. As a consequence of this, 5 is in base 10 a 1-automorphic number.
Vulgar fractions with 5 or 2 in the denominator do not yield infinite decimal expansions, unlike expansions with all other prime denominators, because they are prime factors of ten, the base. When written in the decimal system, all multiples of 5 will end in either 5 or 0.
There are five Exceptional Lie groups.
1 lowly point per pawn gives this:
Mathematically, 1 is:
One cannot be used as the base of a positional numeral system; sometimes tallying is referred to as "base 1", since only one mark (the tally) is needed, but this is not a positional notation.
The logarithms base 1 are undefined, since the function 1x always equals 1 and so has no unique inverse.
In the real-number system, 1 can be represented in two ways as a recurring decimal: as 1.000... and as 0.999... (q.v.).
Formalizations of the natural numbers have their own representations of 1:
In a multiplicative group or monoid, the identity element is sometimes denoted 1, especially in abelian groups, but e (from the GermanEinheit, "unity") is more traditional. However, 1 is especially common for the multiplicative identity of a ring, i.e., when an addition and 0 are also present. When such a ring has characteristic n not equal to 0, the element called 1 has the property that n1 = 1n = 0 (where this 0 is the additive identity of the ring). Important examples are general fields.
One is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few.
In many mathematical and engineering equations, numeric values are typically normalized to fall within the unit interval from 0 to 1, where 1 usually represents the maximum possible value in the range of parameters.
Because of the multiplicative identity, if f(x) is a multiplicative function, then f(1) must equal 1.
It is also the first and second numbers in the Fibonacci sequence (0 is the zeroth) and is the first number in many other mathematical sequences. As a matter of convention, Sloane's early Handbook of Integer Sequences added an initial 1 to any sequence that did not already have it and considered these initial 1's in its lexicographic ordering. Sloane's laterEncyclopedia of Integer Sequences and its Web counterpart, the On-Line Encyclopedia of Integer Sequences, ignore initial ones in their lexicographic ordering of sequences, because such initial ones often correspond to trivial cases.
One is neither a prime number nor a composite number, but a unit, like -1 and, in the Gaussian integers, i and -i. The fundamental theorem of arithmetic guarantees unique factorization over the integers only up to units (e.g., 4 = 22 = (-1)6×123×22).
The definition of a field requires that 1 must not be equal to 0. Thus, there are no fields of characteristic 1. Nevertheless, abstract algebra can consider the field with one element, which is not a singleton and is not a set at all.
One is the only positive integer divisible by exactly one positive integer (whereas prime numbers are divisible by exactly two positive integers, composite numbers are divisible by more than two positive integers, and zero is divisible by all positive integers). One was formerly considered prime by some mathematicians, using the definition that a prime is divisible only by one and itself. However, this complicates the fundamental theorem of arithmetic, so modern definitions exclude units.
One is one of three possible values of the Möbius function: it takes the value one for square-free integers with an even number of distinct prime factors.
One is the only odd number in the range of Euler's totient function φ(x), in the cases x = 1 and x = 2.
One is the only 1-perfect number (see multiply perfect number).
By definition, 1 is the magnitude or absolute value of a unit vector and a unit matrix (more usually called an identity matrix). Note that the term unit matrix is sometimes used to mean something quite different.
By definition, 1 is the probability of an event that is almost certain to occur.
One is the most common leading digit in many sets of data, a consequence of Benford's law.
The ancient Egyptians represented all fractions (with the exception of 2/3 and 3/4) in terms of sums of fractions with numerator 1 and distinct denominators. For example,
. Such representations are popularly known as Egyptian Fractions or Unit Fractions.
The Generating Function that has all coefficients 1 is given by
.
This power series converges and has finite value if and only if,
.
| Multiplication | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 50 | 100 | 1000 | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 50 | 100 | 1000 |
| Division | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
1 | 0.5 | 0.3 | 0.25 | 0.2 | 0.16 | 0.142857 | 0.125 | 0.1 | 0.1 | 0.09 | 0.083 | 0.076923 | 0.0714285 | 0.06 | |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| Exponentiation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
In the philosophy of Plotinus and a number of other neoplatonists, The One is the ultimate reality and source of all existence. Philo of Alexandria (20 B.C.-50 C.E.) Philo regards number one as God's number, and the basis for all numbers ("De Allegoriis Legum," ii.12 [i.66]).
3 points is a minor piece:
It is frequently noted by historians of numbers that early counting systems often relied on the three-patterned concept of "One- Two- Many" to describe counting limits. In other words, in their own language equivalent way, early peoples had a word to describe the quantities of one and two, but any quantity beyond this point was simply denoted as "Many". As an extension to this insight, it can also be noted that early counting systems appear to have had limits at the numerals 2, 3, and 4. References to counting limits beyond these three indices do not appear to prevail as consistently in the historical record.
| Multiplication | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 50 | 100 | 1000 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | 51 | 54 | 57 | 60 | 63 | 66 | 69 | 72 | 75 | 150 | 300 | 3000 |
| Exponentiation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 | 59049 | 177147 | 531441 | 1594323 | |
![]() |
1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728 | 2197 |
Many world religions contain triple deities or concepts of trinity, including:
There are three major divisions in comparative religion:
Three is a very significant number in Norse mythology, along with its powers 9 and 27.
The three cards spread are used in tarot reading with the first representing the past, the second the present, the third the future.
| This section does not cite any references or sources. (April 2009) |
Three (三, formal writing: 叁, pinyin san1, Cantonese: saam1) is considered a good number in Chinese culture because it sounds like the word "alive" (生 pinyin sheng1, Cantonese: saang1), compared to four (四, pinyin: si4, Cantonese: sei1), which sounds like the word "death" (死 pinyin si3, Cantonese: sei2).
Counting to three is common in situations where a group of people wish to perform an action in synchrony: Now, on the count of three, everybody pull! Assuming the counter is proceeding at a uniform rate, the first two counts are necessary to establish the rate, but then everyone can predict when three" will come based on "one" and "two"; this is likely why three is used instead of some other number.
In Vietnam, there is a superstition that considers it bad luck to take a photo with three people in it; it is professed that the person in the middle will die soon.
There is another superstition that it is unlucky to take a third light, that is, to be the third person to light a cigarette from the same match or lighter. This superstition is sometimes asserted to have originated among soldiers in the trenches of the First World War when a sniper might see the first light, take aim on the second and fire on the third.
The phrase "Third time's the charm" refers to the superstition that after two failures in any endeavor, a third attempt is more likely to succeed. This is also sometimes seen in reverse, as in "third man [to do something, presumably forbidden] gets caught".
Luck, especially bad luck, is often said to "come in threes".[4]
|
|
It has been suggested that this article or section be merged into 3 (disambiguation). (Discuss) Proposed since January 2013. |
64 squares on a chess board.
Wikipedia:
In mathematicsSixty-four is the square of 8, the cube of 4, and the sixth power of 2. It is the smallest number with exactly seven divisors. It is the lowest positive power of two that is adjacent to neither a Mersenne prime nor a Fermat prime. 64 is the sum of Euler's totient function for the first fourteen integers. It is also a dodecagonal number and a centered triangular number.
Since it is possible to find sequences of 64 consecutive integers such that each inner member shares a factor with either the first or the last member, 64 is an Erdős–Woods number.
In base 10, no integer added up to its own digits yields 64, hence it is a self number.
64 is a superperfect number - a number such that σ(σ(n))=2n.
64 is the index of Graham's number in the rapidly growing sequence 3,27,7625597484987,....
And chess and math are related!
GGGGGGGGGGGGAAAAAAAAAAAAAASSSSSSSSSSSSSSSSSSSSPPPPPPPPPPP