Prime Numbers...

Sort:
The_Ghostess_Lola
A prime number is a number with exactly two positive
divisors, itself and one.
 
So, the King of Outhouse Sheds is wrong (as usual) & hasn't proven anything.
 
'Cuz if u take 2 and 1 ?....multiplying 2*1 and minusing 1, yields
1, which is a prime #....per the definiton above. 'Cuz nowhere
does it say that "itself" cannot indeed be (1) also !! 
The result is K is a prime # making a mockery of a) in quote #49.
 
Therefore, you hafta prove that (1) is not a prime # to satisfy.
 
Good luck there buster Outhouse !
 
 
shcherbak
[COMMENT DELETED]
The_Ghostess_Lola

Well, 'cuz he probably came up with it sitting out in the outhouse....where he spends mosta his time.

Pleez know that I like (if not luv) almost everyone here on Mister Chess Dot Com.

....he's not one a them....Undecided....

General-TsoTso

sheds will be sucking diesel if he can just eliminate all the even results after subtracting his 1.

ArgoNavis
The_Ghostess_Lola wrote:
A prime number is a number with exactly two positive divisors, itself and one.   So, the King of Outhouse Shed is wrong (as usual) & hasn't proven anything.   'Cuz if u take 2 and 1 ?....multiplying 2*1 and minusing 1, yields 1, which is a prime #....per the definiton above. 'Cuz nowhere does it say that "itself" cannot indeed be (1) also !! The result is K is a prime # making a mockery of a) in quote #49.   Therefore, you hafta prove that (1) is not a prime # to satisfy.   Good luck there buster Outhouse !    

You are wrong. As usual. 1 is not a prime by definition. So shut up and go learn spell my username. And maybe seek psychological help at last.

For those who are really bored and want another proof:

Riemann's zeta function is defined as

Expression (1)

 

It can be proved that:

Expression (2)

 

For those who do not know what the second part of the expression means:

It is a product: 1/(1-2^(-s))  ·  1/(1-3^(-s))   ·   1/(1-5^(-s)) · etc

extended to all the prime numbers

 

It is known that the value of zeta(2)=(pi^2)/6

(pi^2)/6 is irrational, because pi is irrational

Therefore, we have that (pi^2)/6 is equal to the the second part of  expression 2  (substituting s for 2)

So we have that an irrational number is the result of the product of rational numbers. The product of a finite amount of rational numbers is rational, so the product must have infinite factors, which means infinite primes.

The_Ghostess_Lola

No....you're wrong.

n/1=n (I hope u can accept this !)

let n=1.

Therefore, 1/1=1

....n can be any #....including itself !....& satisfy the prime # definition....u beauzeau !

Now. I'll quit calling turtle dum-dum if u rewrite #49....so it's correct. 

ArgoNavis

When defining the prime numbers, 1 is deliberately excluded. It's a convention.

http://mathworld.wolfram.com/PrimeNumber.html

I wouldn't be surprise if you already knew it. After all, most of the time you are just an idiotic annoyance.

CookedQueen
The_Ghostess_Lola wrote:

So lemme get this straight. Is (2) the only even number that's prime ?

Sure! Every other even number is a multiple of 2.

Q.e.d.

General-TsoTso

there is a nice proof by contradiction that primes are infinite.

say there are exactly n primes, then (p1)(p2).......(pn)+1 cannot be prime because its bigger than all of them, but if you divide it by any prime there is a remainder of 1. so it's prime.

ilikewindmills
7
The_Ghostess_Lola
CookedQueen wrote:
The_Ghostess_Lola wrote:

So lemme get this straight. Is (2) the only even number that's prime ?

Sure! Every other even number is a multiple of 2.

Q.e.d.

So lemme get this straight !

(....put da lime in dee coconut she drank 'em bot' up....Smile....)

https://www.youtube.com/watch?v=je98UffdN18

CookedQueen

So the red wine is tasty today, good to know

The_Ghostess_Lola

Definiton from Wikipedia....(read very carefully Outhouse)

A natural number (i.e. 1, 2, 3, 4, 5, 6, etc.) is called a prime number if it has exactly two positive divisors, 1 and the number itself.

****

....and since 1 can be legally divided by itself, it therefore is a prime number also.

This null & voids, shoots down, and embarrasses a) in quote #49. 

meggermegger

yes wine and late night weekends! what kind?

 

 

meggermegger
shcherbak wrote:

3.141592653589793238462643383279502884197169399375105820974944592307816406286 208998628034825342117067982148086513282306647093844609550582231725359408128481 117450284102701938521105559644622948954930381964428810975665933446128475648233 786783165271201909145648566923460348610454326648213393607260249141273724587006 606315588174881520920962829254091715364367892590360011330530548820466521384146 951941511609433057270365759591953092186117381932611793105118548074462379962749 567351885752724891227938183011949129833673362440656643086021394946395224737190 702179860943702770539217176293176752384674818467669405132000568127145263560827 785771342757789609173637178721468440901224953430146549585371050792279689258923 542019956112129021960864034418159813629774771309960518707211349999998372978049 951059731732816096318595024459455346908302642522308253344685035261931188171010 003137838752886587533208381420617177669147303598253490428755468731159562863882 353787593751957781857780532171226806613001927876611195909216420198938095257201 065485863278865936153381827968230301952035301852968995773622599413891249721775 283479131515574857242454150695950829533116861727855889075098381754637464939319 255060400927701671139009848824012858361603563707660104710181942955596198946767 837449448255379774726847104047534646208046684259069491293313677028989152104752 162056966024058038150193511253382430035587640247496473263914199272604269922796 782354781636009341721641219924586315030286182974555706749838505494588586926995 690927210797509302955321165344987202755960236480665499119881834797753566369807 426542527862551818417574672890977772793800081647060016145249192173217214772350 141441973568548161361157352552133475741849468438523323907394143334547762416862 518983569485562099219222184272550254256887671790494601653466804988627232791786 085784383827967976681454100953883786360950680064225125205117392984896084128488 626945604241965285022210661186306744278622039194945047123713786960956364371917 287467764657573962413890865832645995813390478027590099465764078951269468398352 595709825822620522489407726719478268482601476990902640136394437455305068203496 252451749399651431429809190659250937221696461515709858387410597885959772975498 930161753928468138268683868942774155991855925245953959431049972524680845987273 644695848653836736222626099124608051243884390451244136549762780797715691435997 700129616089441694868555848406353422072225828488648158456028506016842739452267 467678895252138522549954666727823986456596116354886230577456498035593634568174 324112515076069479451096596094025228879710893145669136867228748940560101503308 617928680920874760917824938589009714909675985261365549781893129784821682998948 722658804857564014270477555132379641451523746234364542858444795265867821051141 354735739523113427166102135969536231442952484937187110145765403590279934403742 007310578539062198387447808478489683321445713868751943506430218453191048481005 370614680674919278191197939952061419663428754440643745123718192179998391015919 561814675142691239748940907186494231961567945208095146550225231603881930142093 762137855956638937787083039069792077346722182562599661501421503068038447734549 202605414665925201497442850732518666002132434088190710486331734649651453905796 268561005508106658796998163574736384052571459102897064140110971206280439039759 515677157700420337869936007230558763176359421873125147120532928191826186125867 321579198414848829164470609575270695722091756711672291098169091528017350671274 858322287183520935396572512108357915136988209144421006751033467110314126711136 990865851639831501970165151168517143765761835155650884909989859982387345528331 635507647918535893226185489632132933089857064204675259070915481416549859461637 180270981994309924488957571282890592323326097299712084433573265489382391193259 746366730583604142813883032038249037589852437441702913276561809377344403070746 921120191302033038019762110110044929321516084244485963766983895228684783123552 658213144957685726243344189303968642624341077322697802807318915441101044682325 271620105265227211166039666557309254711055785376346682065310989652691862056476 931257058635662018558100729360659876486117910453348850346113657686753249441668 039626579787718556084552965412665408530614344431858676975145661406800700237877 659134401712749470420562230538994561314071127000407854733269939081454664645880 797270826683063432858785698305235808933065757406795457163775254202114955761581 400250126228594130216471550979259230990796547376125517656751357517829666454779 174501129961489030463994713296210734043751895735961458901938971311179042978285 647503203198691514028708085990480109412147221317947647772622414254854540332157 185306142288137585043063321751829798662237172159160771669254748738986654949450 114654062843366393790039769265672146385306736096571209180763832716641627488880 078692560290228472104031721186082041900042296617119637792133757511495950156604 963186294726547364252308177036751590673502350728354056704038674351362222477158 915049530984448933309634087807693259939780541934144737744184263129860809988868 741326047215695162396586457302163159819319516735381297416772947867242292465436 680098067692823828068996400482435403701416314965897940924323789690706977942236 250822168895738379862300159377647165122893578601588161755782973523344604281512 627203734314653197777416031990665541876397929334419521541341899485444734567383 162499341913181480927777103863877343177207545654532207770921201905166096280490 926360197598828161332316663652861932668633606273567630354477628035045077723554 710585954870279081435624014517180624643626794561275318134078330336254232783944 975382437205835311477119926063813346776879695970309833913077109870408591337464 144282277263465947047458784778720192771528073176790770715721344473060570073349 243693113835049316312840425121925651798069411352801314701304781643788518529092 854520116583934196562134914341595625865865570552690496520985803385072242648293 972858478316305777756068887644624824685792603953527734803048029005876075825104 747091643961362676044925627420420832085661190625454337213153595845068772460290 161876679524061634252257719542916299193064553779914037340432875262888

 

because we all love these people. you know who you are.

 

The_Ghostess_Lola
meggermegger wrote:

yes wine and late night weekends! what kind?

 

 

Here's one for you....we Crucians luv reggae....

https://www.youtube.com/watch?v=zXt56MB-3vc

Ohh !...BTW, Ziggy just made a locals cookbook !

meggermegger

i love that song. its one of my favorite oldies tunes. good music video for it too.

Nice!

Senior-Lazarus_Long

   

Nkav
666
Senior-Lazarus_Long

2 x 333