Refined positional evaluations of the first move:
- pev=+0.32, Pev=(+0.14,+0.18) : 1. e3, e4
- pev=+0.27, Pev=(+0.18,+0.09) : 1. d4
- pev=+0.23, Pev=(+0.18,+0.05) : 1. d3
- pev=+0.18, Pev=(+0.14,+0.05) : 1. Nf3
- pev=+0.18, Pev=(+0.05,+0.14) : 1.Nc3
- pev=+0.14, Pev=(0, +0.14) : 1. c3, c4
- pev=+0.09, Pev=(+0.09, 0): f3, f4, g3, g4, Nh3
- pev=+0.09, Pev=(0, +0.09) : 1. Na3, b3, b4
- pev=+0.05, Pev=(+0.05, 0) : 1. h3, h4
- pev=+0.05, Pev=(0, +0.05) : 1. a3, a4
Well, thanks to suggestions by @DanlsTheMan, I'll make some corrections to my original definition:
https://www.chess.com/forum/view/chess-openings/numerical-criterion-of-positional-evaluation
First of all, I'll make the kingside/queenside division:
W=WK+WQ, B=BK+BQ
pevK = (WK/BK - 1)/2 if WK >= BK
pevK = (1 -BK/WK)/2 if BK >= WK
pevQ = (WQ/BQ - 1)/2 if WQ >= BQ
pevQ = (1 - BQ/WQ)/2 if BQ >= WQ
Pev = (pevK, pevQ)
while pev is defined as before. Attention: in general, pev ≠ pevK+pevQ.
Example 1 (King's Pawn opening).
At the kingside, the pawn e4 controls f5 and the white queen controls g4 and h5 (=+3 to the initial 11 controlled squares). At the queenside, the pawn e4 controls d5 and the white LSB controls c4, b5 and a6.
WK=14, WQ=15, W=29; BK=BQ=11, B=22
pevK = (14/11-1)/2 =+0.14, pevQ = (15/11-1)/2 =+0.18
Pev = (+0.14, +0.18); pev = (29/22-1) = +0.32
Example 2 (Sicilian defense).
WK=14, WQ=15, W=29; BK=11, BQ=14, B=25
pevK=(14/11-1)/2=+0.14, pevQ=(15/14-1)/2=+0.04
Pev = (+0.14, +0.04) while pev=(29/25-1)=+0.16
So, we see that Pev describes better the positional situation showing that white has an advantage at the kingside and almost no advantage at the queenside.